Tuesday, March 21, 2023
HomeNoticiasWorld fine-scale adjustments in ambient NO2 throughout COVID-19 lockdowns

World fine-scale adjustments in ambient NO2 throughout COVID-19 lockdowns

[ad_1]

  • 1.

    GBD 2019 Danger Components Collaborators. World burden of 87 threat components in 204 international locations and territories, 1990–2019: a scientific evaluation for the World Burden of Illness Research 2019. Lancet 396, 1223–1249 (2020).


    Google Scholar
     

  • 2.

    Pannullo, F. et al. Quantifying the impression of present and future concentrations of air pollution on respiratory illness threat in England. Environ. Well being 16, 29 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Tao, Y., Mi, S., Zhou, S., Wang, S. & Xie, X. Air air pollution and hospital admissions for respiratory illnesses in Lanzhou, China. Environ. Pollut. 185, 196–201 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Zeng, W. et al. Affiliation between NO2 cumulative publicity and influenza prevalence in mountainous areas: a case research from southwest China. Environ. Res. 189, 109926 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Anenberg, S. C. et al. Estimates of the worldwide burden of ambient PM2.5, ozone, and NO2 on bronchial asthma incidence and emergency room visits. Environ. Well being Perspect. 126, 107004 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Achakulwisut, P., Brauer, M., Hystad, P. & Anenberg, S. C. World, nationwide, and concrete burdens of paediatric bronchial asthma incidence attributable to ambient NO2 air pollution: estimates from international datasets. Lancet Planet. Well being 3, e166–e178 (2019).

    PubMed 

    Google Scholar
     

  • 7.

    Hamra, G. B. et al. Lung most cancers and publicity to nitrogen dioxide and visitors: a scientific evaluate and meta-analysis. Environ. Well being Perspect. 123, 1107–1112 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Brook, J. R. et al. Additional interpretation of the acute impact of nitrogen dioxide noticed in Canadian time-series research. J. Expo. Sci. Environ. Epidemiol. 17, S36–S44 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Crouse, D. L. et al. Inside-and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; a subset of the Canadian Census Well being and Surroundings Cohort (CanCHEC). J. Expo. Sci. Environ. Epidemiol. 25, 482–489 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Goldberg, D. L. et al. Disentangling the impression of the COVID‐19 lockdowns on city NO2 from pure variability. Geophys. Res. Lett. 47, e2020GL089269 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Biswal, A. et al. COVID-19 lockdown induced adjustments in NO2 ranges throughout India noticed by multi-satellite and floor observations. Atmos. Chem. Phys. 21, 5235–5251 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Koukouli, M.-E. et al. Sudden adjustments in nitrogen dioxide emissions over Greece on account of lockdown after the outbreak of COVID-19. Atmos. Chem. Phys. 21, 1759–1774 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Discipline, R. D., Hickman, J. E., Geogdzhayev, I. V., Tsigaridis, Ok. & Bauer, S. E. Modifications in satellite tv for pc retrievals of atmospheric composition over japanese China throughout the 2020 COVID-19 lockdowns. Preprint at https://doi.org/10.5194/acp-2020-567 (2020).

  • 14.

    Bauwens, M. et al. Impression of coronavirus outbreak on NO2 air pollution assessed utilizing TROPOMI and OMI observations. Geophys. Res. Lett. 47, e2020GL087978 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Liu, F. et al. Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Sci. Adv. 6, eabc2992 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Prunet, P., Lezeaux, O., Camy-Peyret, C. & Thevenon, H. Evaluation of the NO2 tropospheric product from S5P TROPOMI for monitoring air pollution at metropolis scale. Metropolis Environ. Work together. 8, 100051 (2020).


    Google Scholar
     

  • 17.

    Shi, X. & Brasseur, G. P. The response in air high quality to the discount of Chinese language financial actions throughout the COVID‐19 Ooutbreak. Geophys. Res. Lett. 47, e2020GL088070 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Ropkins, Ok. & Tate, J. E. Early observations on the impression of the COVID-19 lockdown on air high quality tendencies throughout the UK. Sci. Whole Environ. 754, 142374 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Fu, F., Purvis-Roberts, Ok. L. & Williams, B. Impression of the COVID-19 pandemic lockdown on air air pollution in 20 main cities around the globe. Ambiance 11, 1189 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Venter, Z. S., Aunan, Ok., Chowdhury, S. & Lelieveld, J. COVID-19 lockdowns trigger international air air pollution declines. Proc. Natl Acad. Sci. 117, 18984–18990 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Levy, I., Mihele, C., Lu, G., Narayan, J. & Brook, J. R. Evaluating multipollutant publicity and concrete air high quality: pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environ. Well being Perspect. 122, 65–72 (2014).

    PubMed 

    Google Scholar
     

  • 22.

    Shi, Z. et al. Abrupt however smaller than anticipated adjustments in floor air high quality attributable to COVID-19 lockdowns. Sci. Adv. 7, eabd6696 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Liu, Q. et al. Spatiotemporal adjustments in international nitrogen dioxide emission on account of COVID-19 mitigation insurance policies. Sci. Whole Environ. 776, 146027 (2021).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 24.

    Lamsal, L. N. et al. Floor-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument. J. Geophys. Res. 113, D16308 (2008).

    ADS 

    Google Scholar
     

  • 25.

    Geddes, J. A., Martin, R. V., Boys, B. L. & van Donkelaar, A. Lengthy-term tendencies worldwide in ambient NO2 concentrations inferred from satellite tv for pc observations. Environ. Well being Perspect. 124, 281–289 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Gu, J. et al. Floor-level NO2 concentrations over China inferred from the satellite tv for pc OMI and CMAQ mannequin simulations. Distant Sens. 9, 519 (2017).

    ADS 

    Google Scholar
     

  • 27.

    Cooper, M. J., Martin, R. V., McLinden, C. A. & Brook, J. R. Inferring ground-level nitrogen dioxide concentrations at fantastic spatial decision utilized to the TROPOMI satellite tv for pc instrument. Environ. Res. Lett. 15, 104013 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Levelt, P. F. et al. The Ozone Monitoring Instrument: overview of 14 years in house. Atmos. Chem. Phys. 18, 5699–5745 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Levelt, P. F. et al. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Distant Sens. 44, 1093–1100 (2006).

    ADS 

    Google Scholar
     

  • 30.

    Veefkind, J. P. et al. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for international observations of the atmospheric composition for local weather, air high quality and ozone layer functions. Distant Sens. Environ. 120, 70–83 (2012).

    ADS 

    Google Scholar
     

  • 31.

    Goldberg, D. L., Anenberg, S., Mohegh, A., Lu, Z. & Streets, D. G. TROPOMI NO2 in the US: an in depth take a look at the annual averages, weekly cycles, results of temperature, and correlation with PM2.5. Preprint at https://doi.org/10.1002/essoar.10503422.1 (2020).

  • 32.

    Dix, B. et al. Nitrogen oxide emissions from US oil and fuel manufacturing: current tendencies and supply attribution. Geophys. Res. Lett. 47, e2019GL085866 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Schenkeveld, V. M. E. et al. In-flight efficiency of the Ozone Monitoring Instrument. Atmos. Meas. Tech. 10, 1957–1986 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Gkatzelis, G. I. et al. The worldwide impacts of COVID-19 lockdowns on city air air pollution: a essential evaluate and suggestions. Elem. Sci. Anthr. 9, 00176 (2021).


    Google Scholar
     

  • 35.

    Benítez-García, S.-E., Kanda, I., Wakamatsu, S., Okazaki, Y. & Kawano, M. Evaluation of standards air pollutant tendencies in three Mexican metropolitan areas. Ambiance 5, 806–829 (2014).

    ADS 

    Google Scholar
     

  • 36.

    Duncan, B. N. et al. An area-based, high-resolution view of notable adjustments in city NOx air pollution around the globe (2005–2014). J. Geophys. Res. 121, 976–996 (2016).

    CAS 

    Google Scholar
     

  • 37.

    Bari, M. & Kindzierski, W. B. Fifteen-year tendencies in standards air pollution in oil sands communities of Alberta, Canada. Environ. Int. 74, 200–208 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Zheng, B. et al. Developments in China’s anthropogenic emissions since 2010 because the consequence of unpolluted air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Georgoulias, A. Ok., van der, A. R. J., Stammes, P., Boersma, Ok. F. & Eskes, H. J. Developments and pattern reversal detection in 2 many years of tropospheric NO2 satellite tv for pc observations. Atmos. Chem. Phys. 19, 6269–6294 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Krotkov, N. A. et al. Aura OMI observations of regional SO2 and NO2 air pollution adjustments from 2005 to 2015. Atmos. Chem. Phys. 16, 4605–4629 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Hilboll, A., Richter, A. & Burrows, J. P. NO2 air pollution over India noticed from house – the impression of fast financial development, and a current decline. Preprint https://doi.org/10.5194/acp-2017-101 (2017).

  • 42.

    Zhang, R. et al. Evaluating OMI-based and EPA AQS in situ NO2 tendencies: in the direction of understanding floor NOx emission adjustments. Atmos. Meas. Tech. 11, 3955–3967 (2018).

    CAS 

    Google Scholar
     

  • 43.

    Lin, N., Wang, Y., Zhang, Y. & Yang, Ok. A big decline of tropospheric NO2 in China noticed from house by SNPP OMPS. Sci. Whole Environ. 675, 337–342 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Barkley, M. P. et al. OMI air-quality monitoring over the Center East. Atmos. Chem. Phys. 17, 4687–4709 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Vohra, Ok. et al. Lengthy-term tendencies in air high quality in main cities within the UK and India: a view from house. Atmos. Chem. Phys. 21, 6275–6296 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Kerr, G. H., Goldberg, D. L. & Anenberg, S. C. COVID-19 pandemic reveals persistent disparities in nitrogen dioxide air pollution. Proc. Natl Acad. Sci. 118, e2022409118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Le, T. et al. Sudden air air pollution with marked emission reductions throughout the COVID-19 outbreak in China. Science 369, 702–706 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Chen, L.-W. A., Chien, L.-C., Li, Y. & Lin, G. Nonuniform impacts of COVID-19 lockdown on air high quality over the US. Sci. Whole Environ. 745, 141105 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Hammer, M. S. et al. Results of COVID-19 lockdowns on fantastic particulate matter concentrations. Sci. Adv. 7, eabg7670 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Keller, C. A. et al. World impression of COVID-19 restrictions on the floor concentrations of nitrogen dioxide and ozone. Atmos. Phys. Chem. 21, 3555–3592 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Lamsal, L. N. et al. Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide commonplace product model 4.0 with improved floor and cloud therapies. Atmos. Meas. Tech. 14, 455–479 (2021).

    CAS 

    Google Scholar
     

  • 52.

    van Geffen, J. et al. S5P TROPOMI NO2 slant column retrieval: technique, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 13, 1315–1335 (2020).


    Google Scholar
     

  • 53.

    Folkert Boersma, Ok. et al. Bettering algorithms and uncertainty estimates for satellite tv for pc NO2 retrievals: outcomes from the standard assurance for the important local weather variables (QA4ECV) challenge. Atmos. Meas. Tech. 11, 6651–6678 (2018).


    Google Scholar
     

  • 54.

    Goldberg, D. L. et al. Enhanced capabilities of TROPOMI NO2: estimating NOx from North American cities and energy vegetation. Environ. Sci. Technol. 53, 12594–12601 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Spurr, R. Space-weighting Tessellation For Nadir-Viewing Spectrometers. Inside Technical Notice (Harvard-Smithsonian Heart for Astrophysics, 2003).

  • 56.

    Zhu, L. et al. Formaldehyde (HCHO) as a hazardous air pollutant: mapping floor air concentrations from satellite tv for pc and inferring most cancers dangers in the US. Environ. Sci. Technol. 51, 5650–5657 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Bey, I. et al. World modeling of tropospheric chemistry with assimilated meteorology: mannequin description and analysis. J. Geophys. Res. Atmos. 106, 23073–23095 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Park, R. J., Jacob, D. J., Discipline, B. D., Yantosca, R. M. & Chin, M. Pure and transboundary air pollution influences on sulfate‐nitrate‐ammonium aerosols in the US: implications for coverage. J. Geophys. Res. Atmos. 109, D15204 (2004).

    ADS 

    Google Scholar
     

  • 59.

    Rienecker, M. M. et al. MERRA: NASA’s Fashionable-Period Retrospective Evaluation for Analysis and Purposes. J. Clim. 24, 3624–3648 (2011).

    ADS 

    Google Scholar
     

  • 60.

    Hammer, M. S. et al. World estimates and long-term tendencies of fantastic particulate matter concentrations (1998–2018). Environ. Sci. Technol. 54, 7879–7890 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Gatz, D. F. & Smith, L. The usual error of a weighted imply focus—I. Bootstrapping vs different strategies. Atmos. Environ. 29, 1185–1193 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Chimot, J., Vlemmix, T., Veefkind, J. P., de Haan, J. F. & Levelt, P. F. Impression of aerosols on the OMI tropospheric NO2 retrievals over industrialized areas: how correct is the aerosol correction of cloud-free scenes through a easy cloud mannequin? Atmos. Meas. Tech. 9, 359–382 (2016).

    CAS 

    Google Scholar
     

  • 63.

    Lin, J.-T. et al. Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: results of aerosols, floor reflectance anisotropy, and vertical profile of nitrogen dioxide. Atmos. Chem. Phys. 14, 1441–1461 (2014).

    ADS 

    Google Scholar
     

  • 64.

    Cooper, M. J., Martin, R. V., Hammer, M. S. & McLinden, C. A. An statement‐based mostly correction for aerosol results on nitrogen dioxide column retrievals utilizing the Absorbing Aerosol Index. Geophys. Res. Lett. 46, 8442–8452 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Verhoelst, T. et al. Floor-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia international networks. Atmos. Meas. Tech. 14, 481–510 (2021).

    CAS 

    Google Scholar
     

  • 66.

    Laughner, J. L., Zare, A. & Cohen, R. C. Results of each day meteorology on the interpretation of space-based distant sensing of NO2. Atmos. Chem. Phys. 16, 15247–15264 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Liu, S. et al. An improved air mass issue calculation for nitrogen dioxide measurements from the World Ozone Monitoring Experiment-2 (GOME-2). Atmos. Meas. Tech. 13, 755–787 (2020).

    CAS 

    Google Scholar
     

  • 68.

    Judd, L. M. et al. Evaluating the impression of spatial decision on tropospheric NO2 column comparisons inside city areas utilizing high-resolution airborne information. Atmos. Meas. Tech. 12, 6091–6111 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Kharol, S. Ok. et al. Evaluation of the magnitude and up to date tendencies in satellite-derived ground-level nitrogen dioxide over North America. Atmos. Environ. 118, 236–245 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 70.

    Greene, C. A. et al. The Local weather Knowledge Toolbox for MATLAB. Geochem. Gheophys. Geosyst. 20, 3774–3781 (2015).

    ADS 

    Google Scholar
     

  • [ad_2]

    ARTÍCULOS RELACIONADOS

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Más popular