Tuesday, March 21, 2023
HomeNoticiasAndrogens improve excitatory neurogenic potential in human mind organoids

Androgens improve excitatory neurogenic potential in human mind organoids

[ad_1]

  • 1.

    Ritchie, S. J. et al. Intercourse variations within the grownup human mind: proof from 5216 UK Biobank individuals. Cereb. Cortex 28, 2959–2975 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Ruigrok, A. N. V. et al. A meta-analysis of intercourse variations in human mind construction. Neurosci. Biobehav. Rev. 39, 34–50 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Lancaster, M. A. et al. Cerebral organoids mannequin human mind improvement and microcephaly. Nature 501, 373–379 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Inexperienced, T., Flash, S. & Reiss, A. L. Intercourse variations in psychiatric issues: what we will study from intercourse chromosome aneuploidies. Neuropsychopharmacol. 44, 9–21 (2018).


    Google Scholar
     

  • 5.

    McCarthy, M. M. Multifaceted origins of intercourse variations within the mind. Phil. Trans. R. Soc. B 371, 20150106 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Loomes, R., Hull, L. & Mandy, W. P. L. What’s the male-to-female ratio in autism spectrum dysfunction? A scientific assessment and meta-analysis. J. Am. Acad. Youngster Adolesc. Psychiatry 56, 466–474 (2017).

    PubMed 

    Google Scholar
     

  • 7.

    Abel, Okay. M., Drake, R. & Goldstein, J. M. Intercourse variations in schizophrenia. Int. Rev. Psychiatry 22, 417–428 (2010).

    PubMed 

    Google Scholar
     

  • 8.

    Hines, M. Neuroscience and intercourse/gender: trying again and searching ahead. J. Neurosci. 40, 37–43 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    McCarthy, M. M. & Arnold, A. P. Reframing sexual differentiation of the mind. Nat. Neurosci. 14, 677–683 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Woodson, J. C. & Gorski, R. A. in Sexual Differentiation of the Mind (ed. Matsumoto, A.) Ch. 13 (CRC Press, 1999).

  • 11.

    Rabinowicz, T., Dean, D. E., Petetot, J. M.-C. & Courten-Myers, G. M. D. E. Gender variations within the human cerebral cortex: extra neurons in males; extra processes in females. J. Youngster Neurol. 14, 98–107 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Knickmeyer, R. C. et al. Impression of intercourse and gonadal steroids on neonatal mind construction. Cereb. Cortex 24, 2721–2731 (2014).

    PubMed 

    Google Scholar
     

  • 13.

    Arnold, A. P. A common idea of sexual differentiation. J. Neurosci. Res. 95, 291–300 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Arnold, A. P. The organizational–activational speculation as the muse for a unified idea of sexual differentiation of all mammalian tissues. Horm. Behav. 55, 570–578 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    McCarthy, M. M. Estradiol and the creating mind. Physiol. Rev. 88, 91–134 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Wallen, Okay. Hormonal influences on sexually differentiated conduct in nonhuman primates. Entrance. Neuroendocrin. 26, 7–26 (2005).

    CAS 

    Google Scholar
     

  • 17.

    Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its issues. Endocr. Rev. 32, 81–151 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Pollen, A. A. et al. Molecular id of human outer radial glia throughout cortical improvement. Cell 163, 55–67 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Davey, R. A. & Grossmann, M. Androgen receptor construction, operate and biology: from bench to bedside. Clin. Biochem. Rev. 37, 3–15 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Wang, F. et al. RNAscope: a novel in situ RNA evaluation platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Quartier, A. et al. Genes and pathways regulated by androgens in human neural cells, potential candidates for the male extra in autism spectrum dysfunction. Biol. Psychiat. 84, 239–252 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Qu, Y. et al. Constitutively energetic AR-V7 performs an important position within the improvement and development of castration-resistant prostate most cancers. Sci. Rep. 5, 7654 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Jeselsohn, R. et al. Emergence of constitutively energetic estrogen receptor-α mutations in pretreated superior estrogen receptor-positive breast most cancers. Clin. Most cancers Res. 20, 1757–1767 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Kalinka, A. T. Bettering the sensitivity of differential-expression analyses for under-powered RNA-seq experiments. Preprint at https://doi.org/10.1101/2020.10.15.340737 (2020).

  • 25.

    Tang, T. et al. HDAC1 and HDAC2 regulate intermediate progenitor positioning to safeguard neocortical improvement. Neuron 101, 1117–1133 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Li, L., Jin, J. & Yang, X.-J. Histone deacetylase 3 governs perinatal cerebral improvement through neural stem and progenitor cells. Iscience 20, 148–167 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Dey, A. et al. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene 35, 4256–4268 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Kielar, M. et al. Mutations in Eml1 result in ectopic progenitors and neuronal heterotopia in mouse and human. Nat. Neurosci. 17, 923–933 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum issues (ASDs). Mol. Autism 4, 36–36 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Hackinger, S. et al. Proof for genetic contribution to the elevated danger of kind 2 diabetes in schizophrenia. Transl. Psychiatry 8, 252 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Udawela, M. et al. SELENBP1 expression within the prefrontal cortex of topics with schizophrenia. Transl. Psychiatry 5, e615 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Fatemi, S. H., Folsom, T. D. & Thuras, P. D. Deficits in GABAB receptor system in schizophrenia and temper issues: a postmortem examine. Schizophr. Res. 128, 37–43 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Narayan, S., Head, S. R., Gilmartin, T. J., Dean, B. & Thomas, E. A. Proof for disruption of sphingolipid metabolism in schizophrenia. J. Neurosci. Res. 87, 278–288 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Raudvere, U. et al. g:Profiler: an online server for useful enrichment evaluation and conversions of gene lists (2019 replace). Nucleic Acids Res. 47, W191–W198 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Göttlicher, M. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of reworked cells. EMBO J. 20, 6969–6978 (2001).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Boissinot, M. et al. Induction of differentiation and apoptosis in leukaemic cell strains by the novel benzamide household histone deacetylase 2 and three inhibitor MI-192. Leukemia Res. 36, 1304–1310 (2012).

    CAS 

    Google Scholar
     

  • 37.

    Saito, A. et al. An artificial inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor exercise towards human tumors. Proc Natl Acad. Sci. USA 96, 4592–4597 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Alexeyenko, A. et al. Comparative interactomics with Funcoup 2.0. Nucleic Acids Res. 40, D821–D828 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Mayer, C. & Grummt, I. Ribosome biogenesis and cell development: mTOR coordinates transcription by all three lessons of nuclear RNA polymerases. Oncogene 25, 6384–6391 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Kim, W.-Y. Mind dimension is managed by the mammalian goal of rapamycin (mTOR) in mice. Commun. Integr. Biol. 8, e994377 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Saxton, R. A. & Sabatini, D. M. mTOR signaling in development, metabolism, and illness. Cell 169, 361–371 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Voss, M. H. et al. Section 1 examine of mTORC1/2 inhibitor sapanisertib (TAK-228) in superior stable tumours, with an enlargement part in renal, endometrial or bladder most cancers. Br. J. Most cancers 123, 1590–1598 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Choi, Y. J. et al. Inhibitory impact of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion. PLoS ONE 7, e43418 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Sohal, V. S. & Rubenstein, J. L. R. Excitation–inhibition steadiness as a framework for investigating mechanisms in neuropsychiatric issues. Mol. Psychiatr. 24, 1248–1257 (2019).


    Google Scholar
     

  • 45.

    Marín, O. & Müller, U. Lineage origins of GABAergic versus glutamatergic neurons within the neocortex. Curr. Opin. Neurobiol. 26, 132–141 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    O’Shaughnessy, P. J. et al. Different (backdoor) androgen manufacturing and masculinization within the human fetus. PLoS Biol. 17, e3000002 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Martínez‐Cerdeño, V., Noctor, S. C. & Kriegstein, A. R. Estradiol stimulates progenitor cell division within the ventricular and subventricular zones of the embryonic neocortex. Eur. J. Neurosci. 24, 3475–3488 (2006).

    PubMed 

    Google Scholar
     

  • 48.

    Eliot, L., Ahmed, A., Khan, H. & Patel, J. Dump the “dimorphism”: complete synthesis of human mind research reveals few male–feminine variations past dimension. Neurosci. Biobehav. Rev. 125, 667–697 (2021).

    PubMed 

    Google Scholar
     

  • 49.

    Knickmeyer, R. C. & Baron-Cohen, S. Fetal testosterone and intercourse variations. Early Hum. Dev. 82, 755–760 (2006).

    CAS 

    Google Scholar
     

  • 50.

    Bahari-Javan, S. et al. HDAC1 hyperlinks youth stress to schizophrenia-like phenotypes. Proc. Natl Acad. Sci. USA 114, E4686–E4694 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Ryskalin, L., Limanaqi, F., Frati, A., Busceti, C. L. & Fornai, F. mTOR-related mind dysfunctions in neuropsychiatric issues. Int. J. Mol. Sci. 19, 2226 (2018).

    PubMed Central 

    Google Scholar
     

  • 52.

    Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human mind organoids. Nat. Biotechnol. 35, 659–666 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Fromer, M. et al. Gene expression elucidates useful affect of polygenic danger for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Bagley, J. A., Reumann, D., Bian, S., Lévi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids mannequin interactions between mind areas. Nat. Strategies 14, 743–751 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Hines, M., Constantinescu, M. & Spencer, D. Early androgen publicity and human gender improvement. Biol. Intercourse Differ. 6, 3 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Reyes, F. I., Boroditsky, R. S., Winter, J. D. S. & Faiman, C. Research on human sexual improvement. II. Fetal and maternalserum gonadotropin and intercourse steroid concentrations. J. Clin. Endocrinol. Metab. 38, 612–617 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    McManus, J. M. & Sharifi, N. Construction-dependent retention of steroid hormones by widespread laboratory supplies. J. Steroid Biochem. Mol. Biol. 198, 105572 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Shoskes, J. J., Wilson, M. Okay. & Spinner, M. L. Pharmacology of testosterone alternative remedy preparations. Transl. Androl. Urol. 5, 834–843 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Wright, A. S., Thomas, L. N., Douglas, R. C., Lazier, C. B. & Rittmaster, R. S. Relative efficiency of testosterone and dihydrotestosterone in stopping atrophy and apoptosis within the prostate of the castrated rat. J. Clin. Make investments. 98, 2558–2563 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Iacopino, F. et al. Valproic acid exercise in androgen-sensitive and -insensitive human prostate most cancers cells. Int. J. Oncol. 32, 1293–1303 (1992).


    Google Scholar
     

  • 61.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Giandomenico, S. L. et al. Cerebral organoids on the air–liquid interface generate numerous nerve tracts with useful output. Nat. Neurosci. 22, 669–679 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon gives quick and bias-aware quantification of transcript expression. Nat. Strategies 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package deal for eradicating batch results and different undesirable variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear fashions through coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Gerard, D. Information-based RNA-seq simulations by binomial thinning. BMC Bioinformatics 21, 206 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Stuart, T. et al. Complete integration of single-cell knowledge. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Trapnell, C. et al. The dynamics and regulators of cell destiny choices are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Cao, J. et al. The one-cell transcriptional panorama of mammalian organogenesis. Nature 566, 496–502 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Benito-Kwiecinski, S. et al. An early cell form transition drives evolutionary enlargement of the human forebrain. Cell 184, 2084–2102 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Noctor, S. C., Martínez‐Cerdeño, V. & Kriegstein, A. R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Giandomenico, S. L., Sutcliffe, M. & Lancaster, M. A. Technology and long-term tradition of superior cerebral organoids for finding out later phases of neural improvement. Nat. Protoc. 16, 579–602 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    ARTÍCULOS RELACIONADOS

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Más popular